搜索

服务热线:4006569336

底部图标1

晨辉

全心全意为您服务

内页版权

版权所有:河北晨辉环保设备有限公司    备案:冀ICP备12006314号-2  

底部图标2

底部图标3

晨辉

400-6569-336

底部图标4

9999@hbchhb.com

竭诚欢迎国内外客户、专家、朋友携手共创美好未来!

生物发酵制药行业VOCs和异味污染特征与防控技术

摘要:挥发性有机物(VOCs)和异味是生物发酵制药行业排放的主要污染物质,对人体健康和生态环境有潜在危害。

生物发酵制药行业是我国国民经济的重要组成部分,主要产品为抗生素和维生素及其衍生物等。目前,我国抗感染类产品中80%为生物发酵类抗生素,同时我国还是世界上最大的维生素类药品的生产国与出口国。生物发酵制药行业快速发展的同时,其生产过程中产生的挥发性有机物和异味带来的人体健康风险和生态环境污染也日益受到关注。

一、VOCs和异味的污染特征

生物发酵制药是指通过微生物发酵的方法生产抗生素和其他的活性成分,不同产品的生产工艺大体相似,一般可以分为发酵和提取两个阶段,其中发酵阶段包括高温灭菌和发酵呼吸两种工况,提取阶段包括固液分离、提炼纯化、精制和干燥等步骤。

1.1 发酵阶段VOCs 和异味的污染特征

发酵过程中,原料中的蛋白质、氨基酸在微生物的作用下发生脱羧和脱氨产生异臭味,其臭气浓度一般在5000~7500 之间[18]。此外,发酵菌种代谢产物也可能具有特殊气味。发酵尾气中多种气味混合后,导致尾气的异味特征非常复杂,形成特殊的“发酵味”。不同发酵制药产品的发酵尾气气味有显著不同,例如,硫氰酸红霉素的发酵尾气有明显的霉味和苦涩味,维生素C 的发酵尾气带有酸味,而维生素B的发酵尾气则有明显的甜味等。

1.2 提取阶段VOCs和异味的污染特征

提取指的是发酵液的预处理、固液分离,以及后续的产品精制纯化等过程。提取废气的少部分来自于装置排放的有组织工艺废气,可能是连续的,也可能是间歇的;大部分来自于非密闭式工艺过程中的无组织、间歇式的排放,这部分废气通过蒸发、吹扫和喷溅等方式逸散到大气中。提取废气是制药企业主要的VOCs 污染源,具有物质浓度高、收集难度大等特征。

1.3 污水处理站和菌渣处理阶段VOCs和异味污染特征

污水处理站产生的废气以无组织排放为主,VOCs和异味物质种类较多,异臭味污染较为严重。其中污水处理设施产生的VOCs 和异味主要来自于生化处理。

污水处理站产生的废气与废水处理工艺和运行工况密切相关,各处理单元产生的VOCs和异味在种类和浓度上存在极大差异。

二、 VOCs和异味的末端治理技术

现有的VOCs处理技术可应用于生物发酵制药废气的末端治理,包括吸收、吸附、冷凝和膜分离等回收技术以及高温燃烧、化学氧化、光催化、等离子和生物技术等消除技术。有关技术的概念、原理和适用虑废气的污染特征,进行有针对性的选择和设计,尤其是发酵制药废气的VOCs和异味物质成分复杂,而且不同成分的物理和化学性质相差较大,单一的某种技术难以实现污染物的有效净化,因此,多种技术的联合运用已经成为目前发酵制药行业VOCs和异味治理的重要发展方向之一。

2.1 发酵阶段VOCs和异味的末端治理技术

根据发酵尾气的污染特征,一般没有必要进行物质回收,因此发酵尾气的末端治理以污染物的消除为主。由于抗生素发酵尾气可能带出抗生素活性物质以及气量较大,目前还未有利用生物法处理的报道和成功的工程案例。主流的末端治理技术包括化学氧化、吸收吸附、光催化氧化和高温氧化等,其中化学氧化又包括利用臭氧、液相氧化剂等的常温氧化和催化氧化。

2.2 提取阶段VOCs和异味的末端治理技术

对于高浓度、组分简单的提取废气,一般首先采用回收技术进行处理。冷凝技术作为简单有效的回收方法之一,应用较多。例如,丙酮、甲醇和乙醇等有机溶媒废气在9、−5 和−15℃冷凝温度下的减排效果随着冷凝温度降低,处理效果越好,三者在−15℃下的回收率均能达到90%以上。但该研究同时发现,即使废气冷却到−15℃,尾气中残留的有机溶媒含量仍无法达到文献中的排放要求。因此,低温冷凝技术一般作为高浓度、组分简单提取废气的前处理工序,废气的进一步处理还应配套吸附等后续工艺。例如,针对青霉素和土霉素生产企业在提取阶段产生的乙酸乙酯和正丁醇,采用的组合工艺为“二级冷凝+活性炭吸附”。

2.3 污水处理站和菌渣处理阶段VOCs和异味的末端治理技术

制药废水处理过程中,水解酸化、厌氧消化等环节产生的含有甲烷的中、高浓度废气常采用化学氧化、燃烧的方法进行处理,好氧和沉淀等环节产生的低浓度废气主要是除臭的问题。喷淋吸收是污水处理站处理废气最常用并且较为经济的处理方法之一,常与光氧化、等离子氧化和活性炭吸附等工艺组合,有比较好的除臭效果。含NH3废气一般采用水吸收和酸吸收两种方法进行治理,常温常压下水喷淋对NH3的吸收效率可达到70%以上。